Self-referenced composite Fabry-Pérot cavity vapor sensors.
نویسندگان
چکیده
We develop a versatile, self-referenced composite Fabry-Pérot (FP) sensor and the corresponding detection scheme for rapid and precise measurement of vapors. The composite FP vapor sensor is formed by etching two juxtaposed micron-deep wells, with a precisely controlled offset in depth, on a silicon wafer. The wells are then coated with a vapor sensitive polymer and the reflected light from each well is detected by a CMOS imager. Due to its self-referenced nature, the composite FP sensor is able to extract the change in thickness and refractive index of the polymer layer upon exposure to analyte vapors, thus allowing for accurate vapor quantitation regardless of the polymer thickness, refractive index, and light incident angle and wavelength. Theoretical analysis is first performed to elucidate the underlying detection principle, followed by experimental demonstration at two different incident angles showing rapid and consistent measurement of the polymer changes when the polymer is exposed to three different analytes at various concentrations. The vapor detection limit is found to be on the order of a few pico-grams (~100 ppb).
منابع مشابه
Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing
A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sens...
متن کاملMetal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases.
A ZIF-8 thin film-based Fabry-Pérot device has been fabricated as a selective sensor for chemical vapors and gases. The preparation of the ZIF-8 thin film and a series of ZIF-8 thin films of various thicknesses grown on silicon substrates are presented.
متن کاملLow-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
Fiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO...
متن کاملCompressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity.
We propose and demonstrate a pressure sensor based on a micro air bubble at the end facet of a single mode fiber fusion spliced with a silica tube. When immersed into the liquid such as water, the air bubble essentially acts as a Fabry-Pérot interferometer cavity. Such a cavity can be compressed by the environmental pressure and the sensitivity obtained is >1000 nm/kPa, at least one order of ma...
متن کاملFabry-Pérot-based surface plasmon resonance sensors.
A new sensing approach based on the use of an optical Fabry-Pérot (FP) cavity in conjunction with surface plasmon resonance (SPR) is proposed and theoretically investigated. The impact of the SPR on the intensity and phase response of the proposed sensor structure is evaluated using a modified FP model that takes into account the SPR effect. Compared to the conventional optical-phase-detection-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2012